Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
M
mission-telecom
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 25
    • Issues 25
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aiden Hankinson
  • mission-telecom
  • Issues
  • #13

Closed
Open
Opened Mar 14, 2025 by Aiden Hankinson@aidenhankinson
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses support discovering to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential differentiating feature is its support learning (RL) step, which was utilized to refine the design's actions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's equipped to break down complex queries and reason through them in a detailed manner. This directed thinking procedure enables the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually recorded the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as representatives, rational reasoning and hb9lc.org information analysis tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, making it possible for effective reasoning by routing questions to the most appropriate expert "clusters." This approach allows the model to focus on different issue domains while maintaining total efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and assess designs against key safety criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, produce a limitation increase demand and reach out to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous content, and assess designs against key safety requirements. You can implement security measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to assess user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation includes the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 model.

The design detail page offers vital details about the design's abilities, pricing structure, and implementation standards. You can find detailed usage guidelines, consisting of sample API calls and code bits for combination. The design supports different text generation tasks, consisting of content creation, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning abilities. The page likewise consists of implementation choices and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be . 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of instances (in between 1-100). 6. For example type, choose your instance type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function authorizations, and file encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you might desire to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play area to access an interactive interface where you can explore different triggers and adjust model specifications like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, content for reasoning.

This is an exceptional method to check out the design's reasoning and text generation abilities before integrating it into your applications. The playground supplies instant feedback, helping you comprehend how the design reacts to various inputs and letting you fine-tune your triggers for optimum outcomes.

You can rapidly evaluate the design in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends out a request to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient techniques: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you choose the approach that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design web browser shows available models, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), suggesting that this design can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the design details page.

    The design details page consists of the following details:

    - The model name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the model, it's advised to examine the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, use the instantly produced name or produce a customized one.
  1. For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of circumstances (default: 1). Selecting suitable instance types and counts is important for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The implementation process can take several minutes to complete.

    When release is total, your endpoint status will alter to InService. At this moment, the model is prepared to accept reasoning requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is complete, you can invoke the design using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace implementations.
  5. In the Managed releases section, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative solutions using AWS services and sped up compute. Currently, he is focused on developing methods for fine-tuning and wiki.myamens.com enhancing the reasoning efficiency of large language models. In his downtime, Vivek enjoys hiking, watching motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that assist consumers accelerate their AI journey and unlock business worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: aidenhankinson/mission-telecom#13