Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
M
mission-telecom
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 25
    • Issues 25
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aiden Hankinson
  • mission-telecom
  • Issues
  • #21

Closed
Open
Opened May 30, 2025 by Aiden Hankinson@aidenhankinson
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential identifying function is its support learning (RL) action, which was utilized to fine-tune the design's responses beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, eventually improving both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's geared up to break down intricate inquiries and factor through them in a detailed manner. This assisted thinking procedure permits the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation design that can be incorporated into different workflows such as representatives, rational thinking and information interpretation jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, making it possible for efficient reasoning by routing inquiries to the most pertinent specialist "clusters." This method enables the model to concentrate on various issue domains while maintaining total efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and assess models against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation increase, create a limit increase demand and reach out to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Set up consents to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent harmful content, and assess models against essential safety requirements. You can carry out precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.

The design detail page offers vital details about the design's abilities, rates structure, and implementation standards. You can find detailed use guidelines, including sample API calls and code snippets for integration. The design supports various text generation jobs, consisting of content development, code generation, and question answering, using its support learning optimization and CoT thinking capabilities. The page likewise includes deployment choices and licensing details to help you start with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of circumstances (between 1-100). 6. For example type, choose your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service role approvals, and encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, ratemywifey.com you may desire to evaluate these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the release is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive interface where you can try out various prompts and adjust model criteria like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal results. For instance, material for reasoning.

This is an excellent method to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play area offers immediate feedback, assisting you understand how the model responds to different inputs and letting you tweak your triggers for optimal results.

You can rapidly check the design in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends out a request to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two practical approaches: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to assist you select the approach that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser displays available models, with details like the provider name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the design details page.

    The design details page includes the following details:

    - The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the design, it's suggested to evaluate the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, use the automatically produced name or create a customized one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of instances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The release procedure can take a number of minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the model is ready to accept inference demands through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Clean up

    To avoid unwanted charges, complete the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build innovative services using AWS services and accelerated compute. Currently, he is focused on establishing techniques for fine-tuning and optimizing the inference performance of big language designs. In his spare time, Vivek delights in hiking, enjoying motion pictures, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building solutions that assist customers accelerate their AI journey and unlock company value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: aidenhankinson/mission-telecom#21