Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
M
mission-telecom
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 26
    • Issues 26
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aiden Hankinson
  • mission-telecom
  • Issues
  • #26

Closed
Open
Opened Jun 02, 2025 by Aiden Hankinson@aidenhankinson
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, engel-und-waisen.de together with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses support discovering to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating function is its support learning (RL) action, which was used to refine the design's reactions beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and objectives, ultimately improving both importance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, meaning it's equipped to break down complicated questions and reason through them in a detailed way. This guided thinking procedure enables the model to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation design that can be integrated into various workflows such as agents, sensible reasoning and data analysis jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing questions to the most relevant specialist "clusters." This method allows the design to concentrate on different issue domains while maintaining total performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient models to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and examine designs against key safety requirements. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation boost, create a limitation boost demand and connect to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For instructions, see Set up consents to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging material, and assess models against key security requirements. You can implement safety measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.

The design detail page supplies important details about the model's capabilities, pricing structure, and application standards. You can find detailed use guidelines, including sample API calls and code snippets for combination. The design supports different text generation tasks, including content creation, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking capabilities. The page likewise includes implementation options and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of circumstances (between 1-100). 6. For Instance type, choose your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure sophisticated security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role authorizations, and encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you might want to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can explore various triggers and change model criteria like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal outcomes. For instance, content for reasoning.

This is an outstanding way to check out the model's reasoning and text generation abilities before integrating it into your applications. The playground supplies instant feedback, assisting you comprehend how the model reacts to various inputs and letting you fine-tune your prompts for optimum outcomes.

You can rapidly evaluate the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two convenient approaches: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both approaches to help you select the technique that finest suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model browser shows available models, with details like the service provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 . Each model card reveals key details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the model details page.

    The model details page consists of the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the design, it's recommended to review the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the automatically generated name or create a custom one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable circumstances types and counts is essential for expense and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the design.

    The implementation procedure can take numerous minutes to finish.

    When deployment is total, your endpoint status will change to InService. At this point, the model is all set to accept inference requests through the endpoint. You can monitor the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is complete, you can invoke the design using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Tidy up

    To avoid undesirable charges, complete the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace implementations.
  5. In the Managed deployments area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct ingenious services using AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the inference efficiency of big language designs. In his downtime, Vivek delights in treking, enjoying motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing solutions that help consumers accelerate their AI journey and unlock business value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: aidenhankinson/mission-telecom#26