Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
L
lepostecanada
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 40
    • Issues 40
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Teresa Mercer
  • lepostecanada
  • Issues
  • #27

Closed
Open
Opened Feb 27, 2025 by Teresa Mercer@akoteresa8217
  • Report abuse
  • New issue
Report abuse New issue

Artificial General Intelligence


Artificial general intelligence (AGI) is a type of expert system (AI) that matches or surpasses human cognitive abilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly goes beyond human cognitive abilities. AGI is considered among the meanings of strong AI.

Creating AGI is a primary objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and advancement tasks throughout 37 countries. [4]
The timeline for achieving AGI stays a subject of continuous debate among scientists and experts. As of 2023, some argue that it might be possible in years or decades; others preserve it might take a century or longer; a minority think it may never ever be achieved; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the rapid development towards AGI, suggesting it could be achieved earlier than numerous anticipate. [7]
There is debate on the exact definition of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have specified that alleviating the danger of human extinction postured by AGI should be an international concern. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology

AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) is able to fix one specific problem however does not have general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as human beings. [a]
Related ideas include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical type of AGI that is far more generally intelligent than people, [23] while the notion of transformative AI associates with AI having a big influence on society, for example, similar to the farming or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, competent, specialist, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that outshines 50% of experienced adults in a wide variety of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined but with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence qualities

Researchers typically hold that intelligence is needed to do all of the following: [27]
factor, use technique, solve puzzles, and make judgments under unpredictability represent knowledge, including typical sense understanding strategy find out

  • interact in natural language
  • if necessary, incorporate these abilities in conclusion of any provided objective

Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) think about extra traits such as imagination (the ability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that display many of these abilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robotic, evolutionary calculation, intelligent agent). There is dispute about whether modern AI systems have them to an adequate degree.

Physical traits

Other abilities are considered preferable in smart systems, as they might impact intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and manipulate items, modification location to check out, etc).
This consists of the capability to discover and respond to threat. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and manipulate items, change area to check out, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or become AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a particular physical personification and therefore does not require a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI

Several tests suggested to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the device needs to try and pretend to be a man, by answering concerns put to it, and it will just pass if the pretence is reasonably convincing. A significant part of a jury, who must not be skilled about devices, need to be taken in by the pretence. [37]
AI-complete problems

A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to implement AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous issues that have been conjectured to need general intelligence to solve as well as human beings. Examples consist of computer system vision, natural language understanding, and dealing with unexpected scenarios while solving any real-world problem. [48] Even a specific task like translation requires a device to check out and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently replicate the author's original intent (social intelligence). All of these problems need to be solved concurrently in order to reach human-level device performance.

However, a number of these jobs can now be performed by modern-day big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous criteria for reading understanding and visual reasoning. [49]
History

Classical AI

Modern AI research began in the mid-1950s. [50] The very first generation of AI scientists were encouraged that artificial basic intelligence was possible which it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might create by the year 2001. AI leader Marvin Minsky was a specialist [53] on the project of making HAL 9000 as practical as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the problem of creating 'synthetic intelligence' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.

However, in the early 1970s, it ended up being apparent that scientists had actually grossly underestimated the difficulty of the project. Funding agencies became doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual conversation". [58] In response to this and the success of professional systems, both market and federal government pumped cash into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a track record for making vain guarantees. They became reluctant to make forecasts at all [d] and prevented mention of "human level" artificial intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research

In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by concentrating on specific sub-problems where AI can produce proven results and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology market, and research study in this vein is greatly funded in both academic community and market. Since 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown phase was anticipated to be reached in more than 10 years. [64]
At the turn of the century, lots of traditional AI scientists [65] hoped that strong AI might be established by combining programs that solve numerous sub-problems. Hans Moravec wrote in 1988:

I am confident that this bottom-up path to artificial intelligence will one day satisfy the conventional top-down route majority method, prepared to offer the real-world competence and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully intelligent devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:

The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is truly just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, since it looks as if getting there would just amount to uprooting our signs from their intrinsic significances (consequently simply reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research

The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy objectives in a vast array of environments". [68] This type of AGI, defined by the ability to increase a mathematical meaning of intelligence rather than display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest speakers.

Since 2023 [update], a small number of computer researchers are active in AGI research, and lots of add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended learning, [76] [77] which is the idea of enabling AI to constantly discover and innovate like people do.

Feasibility

Since 2023, the advancement and possible accomplishment of AGI stays a subject of extreme argument within the AI community. While standard agreement held that AGI was a remote goal, current advancements have led some scientists and industry figures to declare that early forms of AGI might currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that " will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and fundamentally unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern-day computing and human-level artificial intelligence is as large as the gulf in between existing area flight and practical faster-than-light spaceflight. [80]
An additional obstacle is the absence of clarity in specifying what intelligence involves. Does it need consciousness? Must it display the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding required? Does intelligence require clearly duplicating the brain and its particular professors? Does it require feelings? [81]
Most AI scientists believe strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, but that today level of development is such that a date can not accurately be predicted. [84] AI experts' views on the feasibility of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the average estimate among professionals for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the exact same question however with a 90% self-confidence rather. [85] [86] Further existing AGI development factors to consider can be discovered above Tests for confirming human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong predisposition towards forecasting the arrival of human-level AI as in between 15 and cadizpedia.wikanda.es 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we believe that it might fairly be deemed an early (yet still incomplete) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of general intelligence has already been attained with frontier models. They wrote that unwillingness to this view comes from four primary reasons: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 likewise marked the emergence of large multimodal models (large language designs capable of processing or creating multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this capability to think before responding represents a new, additional paradigm. It improves design outputs by spending more computing power when creating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had actually achieved AGI, mentioning, "In my viewpoint, we have already attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than a lot of people at many tasks." He likewise dealt with criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific approach of observing, hypothesizing, and validating. These declarations have triggered dispute, as they rely on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate remarkable versatility, they may not totally meet this standard. Notably, Kazemi's remarks came shortly after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's strategic intentions. [95]
Timescales

Progress in artificial intelligence has traditionally gone through durations of rapid development separated by durations when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce area for more progress. [82] [98] [99] For instance, the hardware available in the twentieth century was not adequate to execute deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that quotes of the time needed before a genuinely flexible AGI is developed differ from ten years to over a century. Since 2007 [update], the consensus in the AGI research study neighborhood appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a wide variety of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards forecasting that the onset of AGI would take place within 16-26 years for modern-day and historic predictions alike. That paper has been slammed for how it categorized viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in first grade. An adult concerns about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in performing numerous diverse tasks without particular training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to adhere to their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and demonstrated human-level performance in tasks spanning numerous domains, such as mathematics, coding, and law. This research study triggered an argument on whether GPT-4 could be considered an early, incomplete version of synthetic general intelligence, highlighting the requirement for further exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this things could in fact get smarter than people - a couple of individuals believed that, [...] But many people believed it was method off. And I believed it was way off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis similarly stated that "The development in the last few years has been quite unbelievable", which he sees no reason that it would slow down, expecting AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would can passing any test a minimum of as well as human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation

While the development of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can function as an alternative approach. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational device. The simulation design need to be adequately loyal to the original, so that it acts in virtually the very same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has been discussed in synthetic intelligence research study [103] as a method to strong AI. Neuroimaging innovations that might provide the needed in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a comparable timescale to the computing power required to emulate it.

Early estimates

For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be needed, offered the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate existing supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to predict the required hardware would be offered sometime between 2015 and 2025, if the rapid development in computer system power at the time of writing continued.

Current research

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.

Criticisms of simulation-based approaches

The artificial neuron design assumed by Kurzweil and used in many present artificial neural network implementations is easy compared with biological nerve cells. A brain simulation would likely need to record the detailed cellular behaviour of biological nerve cells, currently comprehended only in broad summary. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are known to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain approach stems from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is appropriate, any totally practical brain model will need to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would be enough.

Philosophical point of view

"Strong AI" as specified in philosophy

In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: A synthetic intelligence system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful declaration: it presumes something special has happened to the device that goes beyond those abilities that we can check. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" device, but the latter would likewise have subjective mindful experience. This usage is likewise common in academic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is essential for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it in fact has mind - undoubtedly, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.

Consciousness

Consciousness can have numerous significances, and some elements play significant roles in science fiction and the ethics of expert system:

Sentience (or "phenomenal consciousness"): The ability to "feel" perceptions or emotions subjectively, instead of the capability to reason about perceptions. Some thinkers, such as David Chalmers, utilize the term "consciousness" to refer solely to sensational consciousness, which is approximately equivalent to life. [132] Determining why and how subjective experience arises is called the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was extensively challenged by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be knowingly familiar with one's own ideas. This is opposed to just being the "subject of one's thought"-an os or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents whatever else)-but this is not what people generally indicate when they use the term "self-awareness". [g]
These qualities have an ethical dimension. AI life would generate concerns of well-being and legal defense, similarly to animals. [136] Other aspects of awareness related to cognitive capabilities are also pertinent to the concept of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social structures is an emerging concern. [138]
Benefits

AGI could have a large variety of applications. If oriented towards such objectives, AGI could help reduce various problems worldwide such as cravings, poverty and illness. [139]
AGI could improve productivity and performance in the majority of tasks. For instance, in public health, AGI might speed up medical research, especially versus cancer. [140] It could take care of the elderly, [141] and democratize access to fast, top quality medical diagnostics. It could provide fun, cheap and tailored education. [141] The need to work to subsist could end up being obsolete if the wealth produced is appropriately redistributed. [141] [142] This likewise raises the concern of the place of people in a significantly automated society.

AGI could also help to make reasonable choices, and to prepare for and prevent disasters. It might likewise assist to reap the benefits of possibly disastrous innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to prevent existential disasters such as human termination (which could be difficult if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to drastically reduce the risks [143] while decreasing the effect of these procedures on our quality of life.

Risks

Existential dangers

AGI may represent multiple kinds of existential danger, which are dangers that threaten "the premature extinction of Earth-originating smart life or the permanent and drastic damage of its potential for preferable future development". [145] The danger of human extinction from AGI has actually been the topic of many disputes, but there is also the possibility that the development of AGI would result in a permanently problematic future. Notably, it might be utilized to spread and protect the set of worths of whoever develops it. If humanity still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might facilitate mass surveillance and indoctrination, which might be used to produce a stable repressive worldwide totalitarian routine. [147] [148] There is also a risk for the machines themselves. If machines that are sentient or otherwise worthwhile of moral consideration are mass created in the future, engaging in a civilizational course that forever disregards their welfare and interests might be an existential disaster. [149] [150] Considering just how much AGI might enhance humankind's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for continuing with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction

The thesis that AI presents an existential threat for humans, and that this risk requires more attention, is controversial however has been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:

So, facing possible futures of incalculable advantages and dangers, the professionals are undoubtedly doing whatever possible to ensure the very best outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a couple of years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The potential fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence permitted mankind to control gorillas, which are now vulnerable in methods that they might not have actually expected. As a result, the gorilla has ended up being an endangered types, not out of malice, but merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humankind and that we ought to take care not to anthropomorphize them and interpret their intents as we would for human beings. He stated that people will not be "wise sufficient to create super-intelligent makers, yet unbelievably stupid to the point of providing it moronic objectives without any safeguards". [155] On the other side, the principle of crucial convergence recommends that almost whatever their objectives, smart representatives will have factors to attempt to survive and obtain more power as intermediary actions to achieving these goals. Which this does not need having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research into fixing the "control issue" to address the question: what kinds of safeguards, algorithms, or architectures can programmers execute to increase the probability that their recursively-improving AI would continue to behave in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to launch items before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential risk likewise has critics. Skeptics typically say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other issues associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for numerous individuals outside of the technology market, existing chatbots and LLMs are already perceived as though they were AGI, resulting in further misunderstanding and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an illogical belief in an omnipotent God. [163] Some scientists think that the communication projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint statement asserting that "Mitigating the danger of termination from AI ought to be an international concern along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment

Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers might see at least 50% of their jobs affected". [166] [167] They think about workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to control robotized bodies.

According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be redistributed: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can end up miserably poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern appears to be toward the second choice, with technology driving ever-increasing inequality

Elon Musk considers that the automation of society will require federal governments to embrace a universal fundamental earnings. [168]
See also

Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI result AI safety - Research location on making AI safe and beneficial AI positioning - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play various games Generative artificial intelligence - AI system capable of creating material in response to triggers Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine ethics - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving multiple device learning jobs at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Machine knowing method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specially created and enhanced for synthetic intelligence. Weak synthetic intelligence - Form of artificial intelligence.
Notes

^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI creator John McCarthy writes: "we can not yet identify in basic what kinds of computational procedures we wish to call smart. " [26] (For a discussion of some meanings of intelligence used by synthetic intelligence researchers, see viewpoint of expert system.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being determined to fund only "mission-oriented direct research study, rather than basic undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the remainder of the workers in AI if the innovators of new basic formalisms would reveal their hopes in a more safeguarded kind than has actually sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a basic AI book: "The assertion that machines might potentially act wisely (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are actually believing (rather than replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic basic intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020. ^ a b c "AI timelines: What do experts in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and cautions of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine risk is not AI itself but the way we release it. ^ "Impressed by artificial intelligence? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential dangers to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI need to be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of tough examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers prevented the term expert system for worry of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite development in device intelligence, synthetic general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of skilled viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, links.gtanet.com.br and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone in between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot utilizing GPT-3 that helped a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'simply a few years,' says CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report cautions". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured however artificial intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their jobs impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal fundamental earnings since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can resolve problems and attain goals on the planet along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system simple sufficient to be easy to understand will not be complicated enough to behave intelligently, while any system complicated enough to behave intelligently will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple silly. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, reason and purpose come from acting worldwide and experiencing the effects. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who wish to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by campaign finance contributions [from tech companies] to press back.' ... Marcus information the demands that residents should make from their governments and the tech companies. They include transparency on how AI systems work; settlement for people if their data [are] utilized to train LLMs (large language model) s and the right to grant this use; and the ability to hold tech business liable for the damages they trigger by eliminating Section 230, enforcing cash penalites, and passing more stringent product liability laws ... Marcus also suggests ... that a brand-new, AI-specific federal firm, similar to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing program for engineers that would operate in a comparable way to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually exposed that although NLP (natural-language processing) models can amazing feats, their capabilities are quite limited by the quantity of context they get. This [...] might trigger [difficulties] for researchers who intend to utilize them to do things such as analyze ancient languages. In some cases, there are few historic records on long-gone civilizations to work as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce phony videos equivalent from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean practical videos produced utilizing artificial intelligence that actually trick people, then they barely exist. The phonies aren't deep, suvenir51.ru and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their role better resembles that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning designs used in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial general intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason logically and tried to depend on its vast database of ... realities derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective but undependable. Rules-based systems can not deal with circumstances their developers did not prepare for. Learning systems are limited by the information on which they were trained. AI failures have currently caused catastrophe. Advanced autopilot features in vehicles, although they carry out well in some scenarios, setiathome.berkeley.edu have driven cars without cautioning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, bytes-the-dust.com Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: akoteresa8217/lepostecanada#27