Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
R
rolandradio
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 71
    • Issues 71
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alba Caban
  • rolandradio
  • Issues
  • #27

Closed
Open
Opened Mar 12, 2025 by Alba Caban@albacaban67437
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement discovering to enhance thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying function is its support knowing (RL) step, which was utilized to refine the model's actions beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, ultimately enhancing both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, indicating it's equipped to break down complicated inquiries and factor through them in a detailed manner. This guided thinking process enables the design to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually captured the industry's attention as a versatile text-generation model that can be incorporated into various workflows such as agents, sensible reasoning and information interpretation jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective inference by routing queries to the most pertinent specialist "clusters." This approach enables the model to concentrate on different issue domains while maintaining overall efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to mimic the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and assess designs against key safety requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, create a limitation increase request and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Establish authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid hazardous material, and evaluate models against key security requirements. You can carry out security procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.

The design detail page provides vital details about the model's capabilities, rates structure, and implementation guidelines. You can find detailed use instructions, including sample API calls and code bits for combination. The design supports numerous text generation tasks, consisting of content development, code generation, and concern answering, using its reinforcement discovering optimization and CoT thinking capabilities. The page likewise consists of release options and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be . 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, enter a variety of circumstances (in between 1-100). 6. For Instance type, select your instance type. For optimal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service role approvals, and encryption settings. For most use cases, the default settings will work well. However, for production implementations, you may want to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can experiment with various prompts and change model specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For instance, material for reasoning.

This is an outstanding way to check out the design's reasoning and text generation abilities before incorporating it into your applications. The playground supplies instant feedback, helping you understand how the model reacts to different inputs and letting you tweak your triggers for ideal results.

You can quickly check the design in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a request to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers 2 practical methods: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the method that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser shows available designs, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for surgiteams.com instance, Text Generation). Bedrock Ready badge (if suitable), showing that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the model details page.

    The design details page consists of the following details:

    - The design name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the model, it's advised to review the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the instantly produced name or produce a customized one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of instances (default: 1). Selecting proper instance types and counts is vital for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The deployment procedure can take numerous minutes to complete.

    When implementation is total, your endpoint status will change to InService. At this moment, the design is prepared to accept reasoning demands through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is total, you can invoke the design utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Tidy up

    To avoid unwanted charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments.
  5. In the Managed releases area, find the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build ingenious options using AWS services and accelerated calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference performance of big language designs. In his downtime, Vivek delights in treking, viewing movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing options that assist consumers accelerate their AI journey and unlock business worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: albacaban67437/rolandradio#27