Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
2
225
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 17
    • Issues 17
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alica Chen
  • 225
  • Issues
  • #4

Closed
Open
Opened Feb 12, 2025 by Alica Chen@alicachen60432
  • Report abuse
  • New issue
Report abuse New issue

Artificial General Intelligence


Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive abilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly exceeds human cognitive capabilities. AGI is considered one of the meanings of strong AI.

Creating AGI is a main objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and advancement tasks across 37 nations. [4]
The timeline for achieving AGI remains a subject of continuous dispute among researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others keep it might take a century or longer; a minority think it may never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the quick progress towards AGI, suggesting it might be attained quicker than lots of expect. [7]
There is dispute on the specific meaning of AGI and regarding whether modern large language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually stated that mitigating the danger of human extinction posed by AGI should be an international concern. [14] [15] Others find the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology

AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular problem however lacks basic cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as people. [a]
Related ideas consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is far more usually intelligent than humans, [23] while the concept of transformative AI associates with AI having a big effect on society, for instance, comparable to the farming or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For instance, a competent AGI is defined as an AI that surpasses 50% of experienced grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined but with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence qualities

Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, usage method, fix puzzles, setiathome.berkeley.edu and make judgments under unpredictability represent knowledge, consisting of typical sense understanding strategy learn

  • communicate in natural language
  • if essential, incorporate these skills in completion of any offered goal

Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider additional characteristics such as creativity (the capability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit a lot of these capabilities exist (e.g. see computational creativity, automated thinking, decision support system, robot, evolutionary calculation, intelligent agent). There is debate about whether contemporary AI systems have them to an adequate degree.

Physical characteristics

Other abilities are thought about desirable in intelligent systems, as they may impact intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and manipulate items, modification location to check out, and asteroidsathome.net so on).
This includes the ability to spot and react to threat. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate things, change area to check out, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or become AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, offered it can process input (language) from the external world in place of human senses. This interpretation lines up with the understanding that AGI has actually never been proscribed a specific physical embodiment and thus does not demand a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI

Several tests indicated to verify human-level AGI have been thought about, including: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a guy, by addressing concerns put to it, and it will just pass if the pretence is reasonably convincing. A part of a jury, who must not be expert about makers, need to be taken in by the pretence. [37]
AI-complete problems

A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to carry out AGI, since the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to need general intelligence to fix in addition to humans. Examples include computer system vision, natural language understanding, and handling unexpected circumstances while fixing any real-world issue. [48] Even a specific job like translation needs a machine to check out and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully reproduce the author's original intent (social intelligence). All of these problems need to be fixed simultaneously in order to reach human-level machine efficiency.

However, numerous of these tasks can now be carried out by modern big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on numerous benchmarks for reading understanding and visual thinking. [49]
History

Classical AI

Modern AI research started in the mid-1950s. [50] The very first generation of AI researchers were persuaded that synthetic general intelligence was possible and that it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the task of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will substantially be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.

However, in the early 1970s, it ended up being obvious that researchers had grossly underestimated the difficulty of the job. Funding companies ended up being skeptical of AGI and put scientists under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual conversation". [58] In response to this and the success of specialist systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in twenty years, AI researchers who anticipated the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI researchers had a reputation for making vain promises. They ended up being hesitant to make predictions at all [d] and prevented reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI accomplished business success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a mature stage was anticipated to be reached in more than ten years. [64]
At the turn of the century, lots of mainstream AI scientists [65] hoped that strong AI could be established by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:

I am positive that this bottom-up path to synthetic intelligence will one day meet the traditional top-down route majority way, prepared to offer the real-world competence and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:

The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually only one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we need to even try to reach such a level, given that it looks as if getting there would simply total up to uprooting our signs from their intrinsic meanings (therefore merely minimizing ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial basic intelligence research study

The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy goals in a large variety of environments". [68] This type of AGI, defined by the ability to increase a mathematical meaning of intelligence instead of show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of visitor speakers.

Since 2023 [update], a small number of computer system scientists are active in AGI research, and lots of contribute to a series of AGI conferences. However, progressively more scientists have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually learn and innovate like humans do.

Feasibility

Since 2023, the development and prospective achievement of AGI remains a subject of extreme argument within the AI neighborhood. While traditional consensus held that AGI was a far-off goal, current developments have led some researchers and industry figures to declare that early types of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unforeseeable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level expert system is as large as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
A more obstacle is the lack of clarity in defining what intelligence involves. Does it require awareness? Must it display the ability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding needed? Does intelligence need explicitly duplicating the brain and its specific professors? Does it require feelings? [81]
Most AI scientists think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that the present level of progress is such that a date can not properly be predicted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the mean quote among experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% responded to with "never ever" when asked the same question but with a 90% confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for validating human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could fairly be viewed as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of general intelligence has currently been attained with frontier models. They composed that unwillingness to this view originates from four primary reasons: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the emergence of large multimodal models (large language designs efficient in processing or producing numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to believe before responding represents a brand-new, extra paradigm. It enhances model outputs by investing more computing power when creating the answer, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had actually achieved AGI, stating, "In my opinion, we have actually currently attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than a lot of people at a lot of tasks." He also attended to criticisms that large language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, assuming, and validating. These statements have actually stimulated argument, as they depend on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate exceptional flexibility, they may not totally meet this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales

Progress in synthetic intelligence has historically gone through periods of quick development separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for further progress. [82] [98] [99] For instance, the computer system hardware offered in the twentieth century was not adequate to carry out deep knowing, which requires big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a genuinely flexible AGI is developed differ from ten years to over a century. As of 2007 [update], the agreement in the AGI research community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have given a vast array of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the onset of AGI would take place within 16-26 years for contemporary and historical predictions alike. That paper has been slammed for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional technique utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was regarded as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup comes to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in performing many varied tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI designs and demonstrated human-level efficiency in jobs covering numerous domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be considered an early, incomplete version of synthetic basic intelligence, highlighting the need for additional exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things could in fact get smarter than people - a few people thought that, [...] But many individuals thought it was way off. And I thought it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.

In May 2023, Demis Hassabis likewise said that "The progress in the last couple of years has been pretty incredible", and that he sees no reason it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation

While the advancement of transformer designs like in ChatGPT is thought about the most promising path to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational device. The simulation model must be sufficiently loyal to the initial, so that it acts in practically the same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in synthetic intelligence research study [103] as a technique to strong AI. Neuroimaging technologies that might deliver the necessary in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power needed to replicate it.

Early approximates

For low-level brain simulation, an extremely powerful cluster of computer systems or GPUs would be needed, provided the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He utilized this figure to predict the necessary hardware would be offered at some point in between 2015 and 2025, if the exponential development in computer power at the time of composing continued.

Current research study

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly detailed and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.

Criticisms of simulation-based techniques

The synthetic neuron design presumed by Kurzweil and utilized in many existing synthetic neural network applications is basic compared to biological nerve cells. A brain simulation would likely have to capture the in-depth cellular behaviour of biological neurons, currently understood just in broad overview. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would need computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are known to play a function in cognitive procedures. [125]
An essential criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is proper, any totally functional brain design will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would be enough.

Philosophical point of view

"Strong AI" as specified in viewpoint

In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) act like it thinks and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a stronger statement: it presumes something special has happened to the maker that surpasses those abilities that we can check. The behaviour of a "weak AI" device would be precisely identical to a "strong AI" device, but the latter would likewise have subjective conscious experience. This use is likewise common in scholastic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the same as Searle's strong AI, unless it is assumed that consciousness is essential for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it actually has mind - certainly, there would be no other way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 various things.

Consciousness

Consciousness can have numerous meanings, and some aspects play considerable functions in science fiction and the principles of artificial intelligence:

Sentience (or "phenomenal consciousness"): The capability to "feel" perceptions or emotions subjectively, rather than the capability to factor about understandings. Some theorists, such as David Chalmers, use the term "consciousness" to refer solely to phenomenal awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience occurs is understood as the tough problem of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished sentience, though this claim was extensively contested by other professionals. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, specifically to be purposely familiar with one's own thoughts. This is opposed to merely being the "topic of one's thought"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the exact same method it represents whatever else)-however this is not what individuals normally imply when they utilize the term "self-awareness". [g]
These qualities have a moral measurement. AI sentience would generate concerns of welfare and legal protection, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are likewise pertinent to the concept of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social frameworks is an emergent concern. [138]
Benefits

AGI might have a wide range of applications. If oriented towards such objectives, AGI could assist alleviate different problems on the planet such as appetite, poverty and health issue. [139]
AGI could improve efficiency and effectiveness in many tasks. For instance, in public health, AGI might accelerate medical research, especially against cancer. [140] It might look after the elderly, [141] and equalize access to fast, top quality medical diagnostics. It could provide enjoyable, inexpensive and customized education. [141] The need to work to subsist might become outdated if the wealth produced is effectively redistributed. [141] [142] This also raises the concern of the place of human beings in a radically automated society.

AGI might likewise assist to make logical decisions, and to anticipate and avoid catastrophes. It might also help to reap the advantages of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's primary goal is to prevent existential disasters such as human termination (which might be tough if the Vulnerable World Hypothesis ends up being true), [144] it could take procedures to dramatically decrease the risks [143] while minimizing the effect of these measures on our quality of life.

Risks

Existential risks

AGI may represent multiple types of existential threat, which are threats that threaten "the early extinction of Earth-originating intelligent life or the permanent and drastic destruction of its capacity for desirable future advancement". [145] The threat of human extinction from AGI has been the subject of numerous debates, however there is likewise the possibility that the development of AGI would lead to a completely flawed future. Notably, it might be used to spread out and maintain the set of worths of whoever establishes it. If mankind still has ethical blind areas comparable to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could help with mass surveillance and brainwashing, which might be utilized to create a steady repressive around the world totalitarian routine. [147] [148] There is also a threat for the machines themselves. If machines that are sentient or otherwise worthwhile of ethical factor to consider are mass produced in the future, participating in a civilizational course that forever ignores their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI might enhance humankind's future and assistance minimize other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination

The thesis that AI presents an existential risk for humans, and that this risk requires more attention, is controversial but has actually been backed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:

So, facing possible futures of incalculable advantages and threats, the experts are certainly doing everything possible to guarantee the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll arrive in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of mankind has actually sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence enabled humankind to dominate gorillas, which are now vulnerable in ways that they might not have actually prepared for. As an outcome, the gorilla has become a threatened species, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humankind which we ought to take care not to anthropomorphize them and translate their intents as we would for humans. He stated that individuals won't be "wise adequate to create super-intelligent makers, yet extremely silly to the point of providing it moronic objectives with no safeguards". [155] On the other side, the concept of instrumental convergence suggests that almost whatever their objectives, intelligent representatives will have factors to attempt to make it through and get more power as intermediary steps to achieving these goals. Which this does not require having feelings. [156]
Many scholars who are worried about existential risk advocate for more research study into solving the "control problem" to address the concern: what kinds of safeguards, algorithms, or architectures can developers execute to increase the likelihood that their recursively-improving AI would continue to act in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might result in a race to the bottom of security preventative measures in order to launch items before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential danger also has detractors. Skeptics usually state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues related to present AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many people outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, causing further misconception and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some scientists believe that the interaction projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, provided a joint statement asserting that "Mitigating the danger of extinction from AI ought to be an international top priority along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness

Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers might see a minimum of 50% of their jobs affected". [166] [167] They think about workplace workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make choices, to interface with other computer system tools, however likewise to manage robotized bodies.

According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or a lot of individuals can end up badly poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the trend appears to be towards the 2nd option, with innovation driving ever-increasing inequality

Elon Musk considers that the automation of society will require federal governments to embrace a universal basic earnings. [168]
See likewise

Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI impact AI security - Research location on making AI safe and helpful AI positioning - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated maker learning - Process of automating the application of device learning BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play different video games Generative expert system - AI system efficient in producing content in response to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of details technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made machines. Moravec's paradox. Multi-task knowing - Solving multiple machine finding out tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of expert system. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially designed and optimized for expert system. Weak expert system - Form of expert system.
Notes

^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the post Chinese space. ^ AI founder John McCarthy writes: "we can not yet characterize in basic what sort of computational treatments we wish to call smart. " [26] (For a discussion of some meanings of intelligence used by expert system scientists, see viewpoint of synthetic intelligence.). ^ The Lighthill report particularly slammed AI's "grandiose goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became determined to fund just "mission-oriented direct research, rather than fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a terrific relief to the remainder of the workers in AI if the developers of brand-new general formalisms would reveal their hopes in a more safeguarded form than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a standard AI book: "The assertion that machines might potentially act wisely (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are in fact believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial general intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself but the method we release it. ^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI should be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everybody to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of tough tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term artificial intelligence for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in device intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of professional opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot utilizing GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide range of views in current research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI threat: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk presented but expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI termination risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal standard income because 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can fix issues and achieve objectives on the planet in addition to human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple enough to be easy to understand will not be made complex enough to behave wisely, while any system made complex enough to behave intelligently will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from makers. For biological creatures, factor and function come from acting worldwide and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't rely on federal governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus details the needs that citizens must make from their governments and the tech business. They include transparency on how AI systems work; payment for people if their data [are] utilized to train LLMs (large language design) s and the right to consent to this use; and the ability to hold tech companies accountable for the damages they trigger by removing Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus also suggests ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing routine for engineers that would function in a similar method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped human beings for decades, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually revealed that although NLP (natural-language processing) models can extraordinary tasks, their capabilities are quite limited by the quantity of context they receive. This [...] might cause [difficulties] for scientists who want to utilize them to do things such as examine ancient languages. In many cases, there are couple of historic records on long-gone civilizations to serve as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced utilizing synthetic intelligence that in fact trick individuals, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their function much better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to neglect contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared not able to factor logically and attempted to depend on its huge database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not handle circumstances their developers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have actually already caused tragedy. Advanced autopilot functions in vehicles, although they carry out well in some situations, have driven vehicles without alerting into trucks, concrete barriers, and parked vehicles. In the incorrect scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to control and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new innovations but depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: alicachen60432/225#4