Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
L
lonestartube
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 57
    • Issues 57
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alice Branco
  • lonestartube
  • Issues
  • #22

Closed
Open
Opened Feb 22, 2025 by Alice Branco@alicebranco819
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion criteria to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses reinforcement discovering to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing function is its support knowing (RL) step, which was used to refine the model's reactions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately enhancing both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, meaning it's geared up to break down intricate questions and reason through them in a detailed way. This assisted thinking process allows the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually captured the industry's attention as a versatile text-generation design that can be integrated into numerous workflows such as agents, sensible thinking and information interpretation tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion criteria, enabling efficient inference by routing inquiries to the most pertinent specialist "clusters." This technique enables the model to focus on various issue domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent damaging material, and assess models against essential safety criteria. At the time of writing this blog, for systemcheck-wiki.de DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, produce a limitation increase demand and connect to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous content, and evaluate designs against essential safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This you to use guardrails to assess user inputs and wiki.dulovic.tech design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 model.

The design detail page supplies essential details about the design's capabilities, rates structure, and implementation guidelines. You can find detailed use guidelines, consisting of sample API calls and code snippets for integration. The model supports numerous text generation jobs, including content development, code generation, and concern answering, using its reinforcement discovering optimization and CoT reasoning abilities. The page likewise consists of implementation alternatives and licensing details to help you get begun with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be prompted to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, get in a number of circumstances (in between 1-100). 6. For example type, pick your instance type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and facilities settings, including virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For most use cases, the default settings will work well. However, for production deployments, you may wish to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the release is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can experiment with various prompts and change design criteria like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For instance, material for reasoning.

This is an outstanding way to check out the model's thinking and text generation abilities before incorporating it into your applications. The play ground supplies immediate feedback, assisting you comprehend how the design responds to various inputs and letting you tweak your triggers for optimum results.

You can quickly evaluate the model in the play ground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or forum.altaycoins.com the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 convenient methods: using the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to help you choose the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design web browser shows available designs, with details like the supplier name and model capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card reveals essential details, consisting of:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if suitable), indicating that this model can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the design details page.

    The model details page consists of the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you release the design, it's advised to evaluate the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, use the automatically generated name or produce a custom one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of circumstances (default: 1). Selecting proper instance types and counts is crucial for cost and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The implementation process can take several minutes to finish.

    When release is total, your endpoint status will change to InService. At this point, the design is ready to accept inference demands through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is complete, you can invoke the design utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To prevent undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the model using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed implementations area, locate the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for gratisafhalen.be Inference at AWS. He assists emerging generative AI companies construct innovative options utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the inference efficiency of big language models. In his complimentary time, Vivek delights in treking, seeing films, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building services that assist customers accelerate their AI journey and unlock business value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: alicebranco819/lonestartube#22