Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
H
hesdeadjim
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 15
    • Issues 15
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Ashlee Fitzpatrick
  • hesdeadjim
  • Issues
  • #7

Closed
Open
Opened Feb 15, 2025 by Ashlee Fitzpatrick@ashleefitzpatr
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing feature is its support knowing (RL) step, which was used to improve the model's reactions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust more effectively to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, meaning it's geared up to break down complicated questions and reason through them in a detailed manner. This guided reasoning process allows the design to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, rational thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion specifications, allowing efficient reasoning by routing questions to the most appropriate professional "clusters." This technique enables the model to specialize in various problem domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more efficient models to simulate the behavior and reasoning patterns of the bigger DeepSeek-R1 design, using it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate models against key safety requirements. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, develop a limitation increase request and connect to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful content, and examine designs against crucial safety requirements. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 design.

The model detail page supplies vital details about the model's abilities, rates structure, and implementation guidelines. You can find detailed usage guidelines, consisting of sample API calls and code snippets for integration. The design supports different text generation jobs, consisting of material development, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning capabilities. The page likewise consists of release options and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The design ID will be . 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, go into a number of instances (between 1-100). 6. For Instance type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For many use cases, archmageriseswiki.com the default settings will work well. However, for production releases, you may wish to review these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start using the design.

When the implementation is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can try out different prompts and adjust model criteria like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum outcomes. For example, content for reasoning.

This is an excellent way to check out the model's thinking and text generation abilities before integrating it into your applications. The playground offers instant feedback, assisting you comprehend how the design reacts to various inputs and letting you tweak your triggers for ideal results.

You can quickly evaluate the design in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 practical approaches: utilizing the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you pick the approach that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available designs, with details like the service provider name and model capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), suggesting that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to view the model details page.

    The design details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the model, it's recommended to evaluate the design details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately created name or produce a customized one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting appropriate circumstances types and garagesale.es counts is essential for cost and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, pediascape.science Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The implementation process can take several minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this point, the design is prepared to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is total, you can conjure up the model using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and pipewiki.org range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To prevent unwanted charges, finish the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed releases area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious services utilizing AWS services and sped up compute. Currently, he is concentrated on establishing strategies for fine-tuning and enhancing the reasoning performance of large language models. In his free time, Vivek takes pleasure in treking, seeing motion pictures, and hb9lc.org trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist customers accelerate their AI journey and unlock company worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: ashleefitzpatr/hesdeadjim#7