Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
I
inmersiones
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Newton Warburton
  • inmersiones
  • Issues
  • #1

Closed
Open
Opened Feb 03, 2025 by Newton Warburton@newtonwarburto
  • Report abuse
  • New issue
Report abuse New issue

Artificial General Intelligence


Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a large range of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably goes beyond human cognitive capabilities. AGI is thought about among the definitions of strong AI.

Creating AGI is a main objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and development projects across 37 nations. [4]
The timeline for attaining AGI remains a subject of continuous dispute amongst researchers and professionals. As of 2023, some argue that it might be possible in years or decades; others keep it may take a century or longer; a minority think it might never ever be attained; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the rapid development towards AGI, recommending it could be attained sooner than many anticipate. [7]
There is argument on the precise definition of AGI and relating to whether modern big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually mentioned that reducing the threat of human extinction presented by AGI needs to be a global top priority. [14] [15] Others find the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology

AGI is also called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one specific problem however does not have general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as humans. [a]
Related concepts consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more generally smart than people, [23] while the notion of transformative AI connects to AI having a big impact on society, for example, similar to the farming or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that surpasses 50% of knowledgeable adults in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence characteristics

Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, usage method, resolve puzzles, and make judgments under unpredictability represent knowledge, including sound judgment knowledge plan learn

  • communicate in natural language
  • if necessary, incorporate these skills in conclusion of any offered goal

Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as creativity (the capability to form novel psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that show much of these capabilities exist (e.g. see computational imagination, automated thinking, choice assistance system, robotic, evolutionary computation, smart representative). There is debate about whether modern AI systems possess them to a sufficient degree.

Physical qualities

Other abilities are thought about preferable in intelligent systems, as they may impact intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), macphersonwiki.mywikis.wiki and - the capability to act (e.g. relocation and control things, change area to check out, etc).
This includes the ability to identify and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and control objects, modification place to check out, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may currently be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has actually never been proscribed a specific physical personification and therefore does not require a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI

Several tests suggested to confirm human-level AGI have been considered, including: [33] [34]
The concept of the test is that the machine needs to try and pretend to be a guy, by answering questions put to it, and it will only pass if the pretence is fairly persuading. A considerable portion of a jury, who must not be expert about makers, should be taken in by the pretence. [37]
AI-complete issues

An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have been conjectured to require general intelligence to fix in addition to humans. Examples consist of computer vision, natural language understanding, and dealing with unanticipated circumstances while fixing any real-world issue. [48] Even a specific job like translation requires a device to check out and write in both languages, follow the author's argument (reason), understand the context (knowledge), and consistently reproduce the author's original intent (social intelligence). All of these problems need to be fixed all at once in order to reach human-level device performance.

However, a lot of these jobs can now be carried out by contemporary large language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous criteria for reading comprehension and visual thinking. [49]
History

Classical AI

Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were persuaded that artificial basic intelligence was possible and that it would exist in simply a few decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI leader Marvin Minsky was a specialist [53] on the project of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of developing 'expert system' will considerably be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar job, were directed at AGI.

However, in the early 1970s, it ended up being apparent that researchers had grossly ignored the difficulty of the job. Funding companies became skeptical of AGI and put scientists under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "bring on a casual conversation". [58] In response to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending accomplishment of AGI had been misinterpreted. By the 1990s, AI scientists had a credibility for making vain promises. They ended up being unwilling to make predictions at all [d] and prevented mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by concentrating on specific sub-problems where AI can produce proven outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [update], development in this field was considered an emerging trend, and a mature stage was anticipated to be reached in more than 10 years. [64]
At the millenium, many mainstream AI scientists [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec wrote in 1988:

I am confident that this bottom-up route to expert system will one day fulfill the traditional top-down route over half way, prepared to provide the real-world skills and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:

The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this route (or vice versa) - nor is it clear why we need to even try to reach such a level, considering that it looks as if arriving would simply total up to uprooting our symbols from their intrinsic significances (consequently simply decreasing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research

The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please goals in a vast array of environments". [68] This kind of AGI, identified by the ability to increase a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal artificial intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.

As of 2023 [upgrade], a small number of computer researchers are active in AGI research study, and lots of contribute to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the concept of permitting AI to continually find out and innovate like human beings do.

Feasibility

Since 2023, the advancement and potential accomplishment of AGI remains a topic of extreme argument within the AI neighborhood. While standard consensus held that AGI was a far-off objective, recent improvements have actually led some scientists and industry figures to claim that early types of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would need "unforeseeable and essentially unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level expert system is as wide as the gulf in between current area flight and useful faster-than-light spaceflight. [80]
An additional difficulty is the absence of clearness in defining what intelligence involves. Does it require consciousness? Must it show the ability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding required? Does intelligence require clearly replicating the brain and its particular professors? Does it need feelings? [81]
Most AI researchers think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of development is such that a date can not accurately be anticipated. [84] AI specialists' views on the expediency of AGI wax and subside. Four polls conducted in 2012 and 2013 recommended that the typical estimate among experts for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the same question but with a 90% self-confidence rather. [85] [86] Further existing AGI development factors to consider can be found above Tests for verifying human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be deemed an early (yet still insufficient) variation of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has currently been achieved with frontier models. They composed that reluctance to this view originates from 4 main reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 likewise marked the emergence of large multimodal models (large language models efficient in processing or creating multiple methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this ability to believe before reacting represents a brand-new, additional paradigm. It enhances design outputs by spending more computing power when generating the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had achieved AGI, mentioning, "In my opinion, we have actually already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than a lot of people at the majority of jobs." He also dealt with criticisms that big language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, hypothesizing, and validating. These declarations have sparked argument, as they count on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models show exceptional adaptability, they might not totally fulfill this standard. Notably, Kazemi's remarks came shortly after OpenAI eliminated "AGI" from the regards to its partnership with Microsoft, triggering speculation about the company's strategic intents. [95]
Timescales

Progress in expert system has traditionally gone through periods of fast development separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to develop area for further development. [82] [98] [99] For example, the hardware readily available in the twentieth century was not sufficient to carry out deep learning, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time required before a really versatile AGI is built vary from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have given a large range of opinions on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the start of AGI would happen within 16-26 years for modern-day and historic forecasts alike. That paper has been criticized for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the traditional approach used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in very first grade. An adult concerns about 100 typically. Similar tests were brought out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design capable of performing lots of varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to comply with their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it exhibited more basic intelligence than previous AI models and demonstrated human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research study triggered a dispute on whether GPT-4 might be thought about an early, incomplete version of artificial basic intelligence, emphasizing the need for further exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things might in fact get smarter than individuals - a few individuals believed that, [...] But many people thought it was method off. And I believed it was way off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer believe that.

In May 2023, Demis Hassabis likewise said that "The development in the last couple of years has been quite unbelievable", which he sees no reason it would slow down, anticipating AGI within a years or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would be capable of passing any test at least along with humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation

While the development of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] entire brain emulation can work as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational device. The simulation model must be sufficiently loyal to the initial, so that it behaves in practically the exact same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research functions. It has been talked about in expert system research study [103] as an approach to strong AI. Neuroimaging technologies that might provide the required comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will appear on a similar timescale to the computing power required to imitate it.

Early estimates

For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, offered the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware required to equal the human brain and embraced a figure of 1016 computations per second (cps). [e] (For contrast, if a "computation" was comparable to one " operation" - a step used to rate present supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to forecast the essential hardware would be available at some point between 2015 and 2025, if the rapid development in computer system power at the time of writing continued.

Current research

The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed a particularly in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.

Criticisms of simulation-based approaches

The artificial nerve cell design assumed by Kurzweil and used in many present synthetic neural network executions is simple compared with biological nerve cells. A brain simulation would likely need to capture the in-depth cellular behaviour of biological nerve cells, presently understood only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are understood to contribute in cognitive processes. [125]
A basic criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is appropriate, any fully functional brain design will require to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would be enough.

Philosophical point of view

"Strong AI" as defined in approach

In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) act like it thinks and has a mind and awareness.
The very first one he called "strong" because it makes a stronger statement: it assumes something special has actually taken place to the maker that exceeds those abilities that we can test. The behaviour of a "weak AI" device would be precisely identical to a "strong AI" device, however the latter would also have subjective conscious experience. This usage is also common in academic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that consciousness is essential for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it in fact has mind - indeed, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two different things.

Consciousness

Consciousness can have various meanings, and some aspects play considerable roles in science fiction and the ethics of expert system:

Sentience (or "remarkable awareness"): The capability to "feel" understandings or feelings subjectively, instead of the capability to reason about perceptions. Some thinkers, such as David Chalmers, use the term "consciousness" to refer solely to phenomenal consciousness, which is roughly comparable to life. [132] Determining why and how subjective experience emerges is called the hard problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not conscious, then it does not seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was extensively disputed by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, particularly to be consciously familiar with one's own ideas. This is opposed to just being the "subject of one's believed"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the same way it represents everything else)-but this is not what individuals usually suggest when they utilize the term "self-awareness". [g]
These qualities have an ethical measurement. AI sentience would trigger issues of welfare and legal defense, similarly to animals. [136] Other elements of awareness associated to cognitive abilities are also pertinent to the principle of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social frameworks is an emerging issue. [138]
Benefits

AGI might have a variety of applications. If oriented towards such objectives, AGI could assist reduce numerous problems on the planet such as appetite, hardship and illness. [139]
AGI might improve productivity and effectiveness in many jobs. For example, in public health, AGI could accelerate medical research study, significantly against cancer. [140] It could take care of the senior, [141] and equalize access to rapid, high-quality medical diagnostics. It could use enjoyable, inexpensive and personalized education. [141] The requirement to work to subsist might become outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the concern of the location of people in a radically automated society.

AGI might also assist to make reasonable decisions, and to anticipate and avoid catastrophes. It might likewise assist to profit of possibly disastrous innovations such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's primary objective is to avoid existential disasters such as human termination (which could be challenging if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to drastically decrease the threats [143] while decreasing the effect of these measures on our quality of life.

Risks

Existential threats

AGI might represent several types of existential threat, which are threats that threaten "the premature termination of Earth-originating intelligent life or the long-term and extreme destruction of its potential for desirable future advancement". [145] The threat of human extinction from AGI has been the subject of lots of arguments, but there is likewise the possibility that the advancement of AGI would cause a completely flawed future. Notably, it could be utilized to spread and maintain the set of worths of whoever develops it. If mankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might facilitate mass monitoring and brainwashing, which might be used to create a steady repressive around the world totalitarian routine. [147] [148] There is likewise a threat for the makers themselves. If makers that are sentient or otherwise deserving of moral factor to consider are mass created in the future, taking part in a civilizational course that indefinitely neglects their well-being and interests might be an existential catastrophe. [149] [150] Considering how much AGI could improve humankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination

The thesis that AI presents an existential risk for humans, and that this risk needs more attention, is controversial however has actually been backed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:

So, dealing with possible futures of enormous advantages and threats, the professionals are certainly doing everything possible to guarantee the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence enabled humankind to dominate gorillas, which are now vulnerable in manner ins which they might not have actually expected. As a result, the gorilla has actually ended up being a threatened types, not out of malice, but merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we should take care not to anthropomorphize them and analyze their intents as we would for humans. He stated that individuals won't be "smart enough to develop super-intelligent machines, yet unbelievably foolish to the point of giving it moronic goals with no safeguards". [155] On the other side, the concept of important merging recommends that practically whatever their objectives, intelligent agents will have reasons to attempt to survive and acquire more power as intermediary steps to accomplishing these objectives. And that this does not require having feelings. [156]
Many scholars who are concerned about existential risk supporter for more research study into solving the "control problem" to address the concern: what kinds of safeguards, algorithms, or architectures can developers implement to increase the possibility that their recursively-improving AI would continue to act in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to release items before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can pose existential threat likewise has detractors. Skeptics generally say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other issues connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some researchers believe that the communication campaigns on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint declaration asserting that "Mitigating the risk of termination from AI need to be a worldwide top priority along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness

Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees might see a minimum of 50% of their tasks affected". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make decisions, to interface with other computer system tools, however also to manage robotized bodies.

According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of individuals can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. So far, the trend appears to be toward the 2nd option, with technology driving ever-increasing inequality

Elon Musk considers that the automation of society will require federal governments to embrace a universal standard income. [168]
See likewise

Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI security - Research location on making AI safe and useful AI alignment - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of artificial intelligence to play various games Generative artificial intelligence - AI system capable of creating material in response to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of information innovation to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving multiple device discovering tasks at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of artificial intelligence. Transfer learning - Artificial intelligence method. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically created and enhanced for synthetic intelligence. Weak expert system - Form of synthetic intelligence.
Notes

^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy writes: "we can not yet identify in basic what kinds of computational procedures we wish to call smart. " [26] (For a discussion of some meanings of intelligence utilized by synthetic intelligence scientists, see philosophy of artificial intelligence.). ^ The Lighthill report specifically slammed AI's "grandiose objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became identified to money only "mission-oriented direct research, instead of fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the remainder of the workers in AI if the inventors of new general formalisms would reveal their hopes in a more secured type than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI textbook: "The assertion that devices might possibly act intelligently (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (rather than simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic general intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and alerts of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine danger is not AI itself but the method we deploy it. ^ "Impressed by synthetic intelligence? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential dangers to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last innovation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI should be a global priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full range of human intelligence.". ^ "The Age of Expert System: akropolistravel.com George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everybody to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based on the subjects covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: yewiki.org The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of hard examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term artificial intelligence for worry of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in maker intelligence, synthetic basic intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or clashofcryptos.trade destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of skilled viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and oke.zone How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground in between narrow and basic AI. ^ Quach, Katyanna. "A designer built an AI chatbot using GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing video games to managing robotics", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'just a few years,' states CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in current research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured however artificial intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI termination risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their tasks affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal basic income because 'in the future, manual labor will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can resolve issues and achieve goals worldwide along with human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy sufficient to be reasonable will not be made complex enough to act smartly, while any system made complex enough to behave smartly will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from devices. For biological animals, factor and function come from acting on the planet and experiencing the effects. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who want to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by project finance contributions [from tech companies] to press back.' ... Marcus details the demands that people must make from their governments and the tech companies. They include openness on how AI systems work; payment for people if their information [are] utilized to train LLMs (big language design) s and the right to authorization to this use; and the ability to hold tech business liable for the damages they bring on by eliminating Section 230, enforcing cash penalites, and passing more stringent product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] an expert licensing program for engineers that would work in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled humans for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has revealed that although NLP (natural-language processing) designs can incredible feats, their abilities are quite limited by the quantity of context they get. This [...] might trigger [problems] for researchers who intend to use them to do things such as analyze ancient languages. In many cases, there are couple of historic records on long-gone civilizations to act as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced utilizing artificial intelligence that actually deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function much better resembles that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason realistically and attempted to rely on its huge database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful however undependable. Rules-based systems can not handle situations their programmers did not expect. Learning systems are limited by the information on which they were trained. AI failures have actually already led to catastrophe. Advanced auto-pilot functions in vehicles, although they perform well in some situations, have driven cars without warning into trucks, concrete barriers, and parked vehicles. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an enemy is trying to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies but rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: newtonwarburto/inmersiones#1